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Background:  Competitors are Punished

Fruit - Pear
Fruit - Apple
Red - Apple
Red - Rose

Fruit - P____
Fruit - A____
Red - A____
Red - R____

Fruit - Pe___
(partial practice)

or
Fruit - Pear

(full practice)

Study Practice Test

Recall after practice, relative to baseline

Test Item

In other words, if given a partial practice - 
	 •Recall of the practiced item improves (Fruit-Pear)
	 •Recall of competitors gets worse (Fruit-Apple),
	  in a cue-independent fashion (Red-Apple)
and if given a full practice - 
	 •Recall of the practiced item improves (Fruit-Pear)
	 •Other items are unaffected (Red-Rose) 

After Partial Practice   After Full Practice
    (Fruit - Pe___)	 	      (Fruit - Pear)

Fruit - P(ear)

Fruit - A(pple)

Red - A(pple)

Red - R(ose)

BETTER

WORSE

WORSE

SAME

BETTER

SAME

SAME

SAME

We present a new learning algorithm that leverages oscillations in the 
strength of neural inhibition to train neural networks.   

Raising inhibition can be used to identify weak parts of target memories, 
which are then strengthened (by increasing weights into those units). 

Conversely, lowering inhibition can be used to identify competitors, which are 
then punished (by reducing weights into those units).

We use the learning rule to account for behavioral data regarding how 
competition at retrieval affects subsequent memory.   We also show that the 
learning algorithm's capacity for storing patterns increases steadily as a 
function of network size,  and that the learning algorithm can memorize large 
numbers of correlated patterns without collapsing.

Finally, we relate this work to neural data on theta oscillations and learning.

Summary

The goal of this research is to identify basic neural learning mechanisms that can:

-  Account for retrieval-induced forgetting data, and other psychological findings 
showing how competitors are punished 

- Train new patterns into the network

The goals are synergistic:   The ability to push away competitors should help
 networks store new information.

Oscillation based learning rule (Norman, Newman, Detre, & Polyn, in preparation)

Oscillate between NORMAL - LOW - NORMAL inhibition (N-L-N)
	
	 Low inhibition = Less constraint on network activity
	 The network has more space to represent 
 	 competitors 	
	
	 LOWERING inhibition lets the network identify competitors  	 	
	 (O'Reilly & McClelland, personal communication)

Oscillate between NORMAL - HIGH - NORMAL inhibition (N-H-N)
	
	 High inhibition = More constraint on network activity
	 Stress-test of target:  Poorly supported units turn off,
       well-supported units remain active
	 	
	 RAISING inhibition lets the network identify weak parts 
       of the target

Learn based on changes in activity

Changing activity during N-L-N = competitors popping up

How to map changing activity to learning:
	 Inhibition decreases: Competitors become active
	 	 Therefore - increases in activity should trigger weakening

	 Inhibition returns to normal: Competitors back off
	 	 Therefore - decreases in activity should trigger weakening

Changing activity during N-H-N = target dropping out

How to map changing activity to learning:
	 Inhibition increases: Weak target units turn off

	 	 Therefore - decreases in activity should trigger strengthening

	 Inhibition returns to normal: Target turns back on

	 	 Therefore - increases in activity should trigger strengthening

Extract structure of stored information with oscillations
Low inhibition to punish competitors High inhibition to strengthen target

The Network

Hidden layer:
- Self-organizes representations
- average activity = approx. 10%

Connections:
Full connectivity both
between and within layers

Input/Output Layer:
- Input patterns presented here

Network behavior during training
Graphs show activation of target and competitor , and the inhibitory oscillation on one trial

Early in training:	

- High inhibition
	 Target units decrease in activity
- Low inhibition
	 Competing units increase in activity
	

Late in training:

- High inhibition
	 Target units strong enough
	  to stay on
- Low inhibition
	 Competing units too weak
	 to come on

Capacity Simulations

Correlated Patterns

Uncorrelated Patterns

Applications of the Learning Rule
We are currently using the model to simulate:

- Other retrieval-induced forgetting findings (e.g., the effects of target and competitor strength/similarity)
- Cognitive dissonance reduction (Norman & Hovnanian, in preparation)
- Familiarity discrimination:  Familiarity = the size of the dip in activation when inhibition increases above baseline
- Learning during sleep:  How learning based on theta oscillations during REM can strengthen stored memories & help protect 
them from interference (Norman & Perotte, in preparation)

We are also planning to apply the model to other instances of competitor-punishment, e.g., negative priming effects.

Finally, although our model (as presented here) does not include prefrontal cortex (PFC), we think PFC plays a critical role in 
biasing competition when the correct response is not the dominant response.  Future modeling work will directly address PFC 
contributions.
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Implementation

1. Generate four patterns
	 A target pattern (presented at study and practice)
	 A competitor pattern (50% similar to target , presented at study but not practice)
	 and two controls (50% similar to each other, presented at study but not practice)

Only oscillate inhibition in the input layer

	 Input:
	 	 1. Calculate baseline inhibition to allow k active units
	 	 2. Add an oscillating component to this value

	 Hidden:
	 	 1. Calculate baseline inhibition to allow k active units
	 	 2. No oscillating component

Allow one full oscillation each trial

Compute weight change by applying the Contrastive Hebbian
Learning rule (Movellan, 1990) to successive time steps of the
network (t and t+1).

The sign of the learning rule changes as a function of the phase
of the inhibitory oscillation (see equations to the right).

Weight changes are calculated at every time step, and applied at
the end of each trial.

LOW INHIBITION
(SHOW COMPETITORS)

HIGH INHIBITION
(SHOW WEAK TARGET UNITS)

Apple

I
N
H
I
B
I
T
I

O
N

(High)

(Low)

 

INHIBITION APPLIED TO INPUT LAYER 
(CONSTRAINT) 

Normal Low Normal High Normal 
Target on Target on Target struggles to stay on Target comes back on 

Competitor allowed on Competitor forced off Competitor off Competitor off 
Weaken changing units Strengthen changing units 

 

Pear

Pear

Pear

Pear

Apple

Apple

Apple Apple Pear

Learning rule as a function of phase of oscillation:
(Note:  xi = presynaptic neuron, yj = postsynaptic neuron)

When inhibition is moving away from its midpoint:
 	 Weight change = lrate * ((xi (t) * yj (t)) - (xi (t + 1) * yj (t + 1)))

Normal to Low Inhib:  The rule weakens competing units that are coming on
	 	 Increases in receiving unit activation ( yj (t + 1) >  yj (t))
	 	 cause negative weight change from active senders

Normal to High Inhib:  The rule strengthens target units that are turning off
	 	 Decreases in receiving unit activation ( yj (t) >  yj (t + 1))
	 	 cause positive weight change from active senders

When inhibition is moving towards its midpoint:
	 Weight change = lrate * ((xi (t + 1) * yj (t + 1)) - (xi (t) * yj (t)))

Low to Normal Inhib:  The rule weakens competing units that are turning off
	 	 Decreases in receiving unit activation ( yj (t) >  yj (t + 1))
	 	 cause negative weight change from active senders

High to Normal Inhib:  The rule strengthens target units that are coming on
	 	 Increases in receiving unit activation ( yj (t + 1) >  yj (t))
	 	 cause positive weight change from active senders

2. Train the network on these patterns
	 Present the network with the complete patterns
	 Update weights after each pattern
3. Pretest the network's ability to pattern complete on all patterns
	 Present 1/8 units of the pattern as cue. 
4. Allow network to practice target pattern
	 In case of partial practice:  4/8 units presented
	 In case of full practice:  8/8 units presented
5. Test the network's ability to pattern complete on all patterns again
	 Compare to pretest performance to calculate practice effect  

For a downloadable version, please visit:  http://compmem.princeton.edu/publications.html ELN was supported by an NIH Training Grant in Quantitative Neuroscience (MH65214) awarded to Princeton University

Retrieval-Induced Forgetting Simulations

Method

Effect of Practice Phase on the Competitor

We trained the network on randomly generated input patterns with 8/80 units active.  We tested the network after 25 
epochs of training by presenting 7/8 units from trained patterns; the network had to activate the missing unit.

In this simulation, we generated correlated patterns by 
"flipping bits" away from a prototype pattern, and explored 
how varying the degree of correlation affects capacity.  This 
simulation used 40 hidden units (k = 8) and 250 input patterns.

Other self-organizing learning algorithms (e.g.,  CPCA Hebbian 
learning; O'Reilly & Munakata, 2000) lose their memory for 
item-specific details when given large numbers of correlated 
patterns.  However (up to a point) increasing overlap between 
patterns actually increases our model's capacity for recalling 
specific, non-prototypical features of individual patterns. 
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Full practice (8/8 units):

- Cue matches the target perfectly
- Just like "late in training" above
- Inhibitory oscillation does 
not affect network activity
- Because the competitor does not 
pop up, it does not get punished:
The effect of full practice on
competitor recall is negligible 
(.32 increase in sum squared error)

Partial practice (4/8 units):

- Match between the cue and target
(relative to match between the cue
and competitor) is less good here
- The competitor turns on during 
the low inhibition phase 
- This change in activity leads to
substantial weakening of the
competitor (4.56 increase in 
sum squared error).

Our original motivation for this research was to model data on competitive 
dynamics and memory.  Across several domains, researchers have found that
competitors are punished during memory retrieval.

More specifically:  When a representation is activated by a retrieval cue, but that 
representation loses the competition to be retrieved, it suffers a lasting decrease
in accessibility (on the order of hours and possibly longer).

This principle is illustrated very nicely by Michael Anderson's work on retrieval-
induced forgetting, illustrated below (see Levy & Anderson, 2002, for a review).  

Intuitive story:  Partial practice affects "Apple" more than full practice because the 
cue is more ambiguous in the partial practice condition, which in turn leads to 
more competition.  Because "Apple" competes more strongly in the partial 
practice condition (but still loses the competition), it accrues more punishment.

What are the brain mechanisms of competitor punishment? Existing accounts 
focus on the role of prefrontal cortex in resolving competition.  These accounts 
help explain the dynamics of competition do not explain why competition has 
lasting effects on memory.
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The graph on the right plots the maximum number of 
patterns learned as a function of the number of hidden 
units.  The capacity of the network appears to increase in a 
linear fashion as a function of the number of hidden units.

The graph on the left plots number of correct responses as 
a function of the number of patterns in the training set 
and the number of hidden units.  The average number of 
active units in the hidden layer was held constant at k = 8.

Relation to Theta Oscillations
- There is extensive evidence that theta-frequency inhibitory oscillations are related to learning in cortex and hippocampus 
(e.g.,  Raghavachari et al., 2001; Rizzuto et al., 2003) but very little agreement regarding how, mechanistically,  they contribute.   
This model shows how inhibitory oscillations can help train cortical attractor networks by alternately "stress-testing"  target 
memories and revealing competitors.

- The fact that the sign of our learning rule depends on the phase of the  inhibitory oscillation is reminiscent of Huerta & 
Lisman's (1996) finding that the "sign" of plasticity (LTP vs. LTD) depends on theta phase.  However, much more work needs to 
be done to flesh out the details of this comparison.  In future research, we will explore how our model relates to other, more 
biologically detailed models of how theta modulates learning, in the hippocampus and elsewhere  (e.g., Hasselmo, Bodelon, & 
Wyble, 2002).

Our model avoids collapse because of its tendency to evenly space representations in the hidden layer.  If representations 
get too close to each other, competitor-punishment mechanisms push them away; also, the model benefits from its ability 
to focus learning on features that are not already well-learned.  Increasing overlap ends up boosting capacity because the 
model can exploit redundancies in correlated patterns in order to code them more efficiently.
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